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ABSTRACT
In the International System of Units, SI, the linear
acceleration quantity and the other dynamic
quantities are defined as derived quantities.
Depending upon both measurement standards
and measurement methods they are traceable to
certain basic quantities in the SI. The uncertainty
of the measurement gives an idea about the length
of the traceability chain up to the standards of
basic quantities and the accuracy of the methods
used in every calibration step. Experimental
results of a Michelson interferometer, whose
standards are traceable to basic units of length
and time, are shown.
The experimental method analyzed in this paper is
the fringe counting method. The uncertainty
budget, which is based on the first order Taylor
series approximation, expressed for the sensitivity
calibration of a piezoelectric accelerometer, is
analyzed. The obtained uncertainty model has the
ability to identify the most important sources of
uncertainty, besides further improvements to the
measurement accuracy are discussed. Also, the
models of some of the identified sources of
uncertainty are experimentally validated and their
results are shown.
The classical approach of the uncertainty, which
uses only first order Taylor series approximation,
is compared with an approximation using higher
order terms in the Taylor series. Some concluding
remarks about the model of uncertainty are made
based on these two approaches. Experimental
validation of both approximations are presented
and discussed in the work.

NOMENCLATURE
SC charge sensitivity of the accelerometer,

pC/(m/s2)
E charge amplifier output voltage, mV
λ laser He-Ne wavelength, nm
FF photodiode output frequency, Hz
FE excitation frequency on the accelerometer,

Hz
AC charge amplifier sensitivity, mV/pC
uC combined standard uncertainty
r(xi,xj)  correlation coefficient between xi and xj

1. INTRODUCTION

Nowadays, every measurement result has two
parameters related to it, i.e., its mean value and its
uncertainty. The mean value is the expected true
value and the measurement uncertainty gives an
idea about the total variability of the measurement
process. The uncertainty could be thought as the
“quality” of the measurement, it means that the
higher measurement quality, the smaller related
uncertainty.

The uncertainty of the measurement also gives an
idea about the length of the traceability chain up to
the standards of basic quantities and the accuracy
of the methods used in every calibration step. The
traceability chart for the charge sensitivity
calibration of an accelerometer, when the fringe
counting method is used with a Michelson
interferometer, is shown below.

Coulomb Second Volt Meter

Capacitance [C] Time [s] Voltage [V] Length [m]

CENAM (México) CENAM (México) CENAM (México) CENAM (México)

National Standard N.Std. / HP5071A National Standard N.Std./Stab.Laser

uc =0,2 ppm uc =0,02 ppm uc=0,5 ppm uc =0,05 ppm

External
Traceability

CNM-CC-430-004/2001         CNM-CC-430-002/2001       CNM-CC-410-080/2001           CNM-CPI-520-002/2001        

Frequency [Hz] Frequency [Hz] Voltage [V] Wavelength [m] Temperature [°C]

Count HP 15131A Gener. B&K1051 Mult. Datron 1271 Laser He-Ne Thermometer

dc - 1 MHz dc - 20 kHz dc - 10 V (ca) 632,81 nm 0 °C - 150 °C

uc =2,2 ppm uc =0,4 ppm uc=30 ppm uc=1,0 ppm uc=1 %

Rel. Humidity

                      Internal Humidity Sens.

                            Traceability 20 % - 99 %

Charge A.[mV/pC] Volt. A. [mV/mV] FFT [Hz - |H|] uc=1 %

Amp. B&K2650 Amp. B&K2610 Analiz. B&K3555

0,001 - 10 mV/pC dc - 10 V (ca) dc - 25,6 kHz Atmospheric Pre.

uc =300 ppm uc =250 ppm uc=0,1 % Barometer

200 - 1020 hPa

uc=2 %

     510-AC-P.017 ISO 16063-11:1999          Dissemination

Acceleration[m/s2]

Aceler. B&K8305

0 - 420 m/s2

uc=0,5 %

Traceabil i ty Chart of the Acceleration quantity by laser Interferometry

Figure 1

The reference that is known as ‘GUM’ or ‘The
Guide’ [1], describes the process to estimate the
uncertainty of measurement. The main aims of the
GUM are: i. to promote full information on how
uncertainty statements are arrived at, and; ii. to
provide a basis for the comparison of
measurement results. Therefore, if we need to
‘compare’ some measurement result, it is useful to
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take into account the uncertainties of each
measurement process included in the comparison.

The starting point of every uncertainty budget is a
mathematical model. This model is a functional
relationship between the measurand, which is the
specific quantity to be measured; and the input
quantities, which are quantities whose values and
uncertainties are measured directly in the
experimental setup. The process to model the
measurement is shown in the following section.

2. MODELING THE MEASUREMENT

In many experimental cases a measurand, y, is
not measured directly, but is determined from N
other quantities, x1, x2, . . . , xN, through a
functional relationship, f,

y = f(x1,x2, . . . ,xN) (1)

Each input quantity, xi, and its associated standard
uncertainty, u(xi), are obtained from a distribution
of possible values, i.e., Gaussian, t-student,
uniform. Besides, two types of uncertainty are
defined, following a Bayesian standpoint. Type A
uncertainties are evaluations of standard
uncertainty components founded on frequency
distributions, i.e., standard deviation of the mean.
Type B uncertainties are evaluations founded on a
priori distributions, i.e., specifications, standards,
scientific research, etc.

Once all the independent sources of uncertainty
are taken into account, they are combined based
on a first order Taylor series approximation of y,
the expression is the well known law of
propagation of uncertainty, and can be expressed
as follows,
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where r(xi,xj)=r(xj,xi), and -1≤r(xi,xj)≤+1, is the
correlation coefficient between xi and xj. The result
of this law is the combined standard uncertainty,
uC, which is an estimated standard deviation and
characterizes the dispersion of the values that
could reasonably be attributed to the measurand,
y.

Although uC can be universally used to express
the uncertainty of a measurement result, in some
applications it is necessary to give a measure of
uncertainty that defines an interval about the
measurement result that may be expected to
encompass a large fraction of the distribution of
values that could reasonably be attributed to the
measurand. The additional measure of uncertainty
that meets the requirement of providing an interval
of the kind indicated above is termed expanded
uncertainty and is denoted by U. The U is obtained

by multiplying the combined standard uncertianty,
uC, by a converage factor, k,

( )yukU C⋅= (3)

Then, the U can be interpreted as defining an
interval about the measurement result that
encompasses a large fraction p of the probability
distribution characterized by that result and its
combined standard uncertainty, and p is the level
of confidence of the interval. To obtain the value of
the coverage factor, k, that produces an interval
corresponding to a specified level of confidence p,
a t-distribution of the measurand, y, may be
considered and the effective degrees of freedom,
νeff, can be obtained from the Welch-Satterhwaite
formula [1]
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In the following section, the estimation of the
sensitivity magnitude of an accelerometer is
described, when a calibration by laser
interferometry is used. The calibration method is
known as the fringe counting method.

3. CHARGE SENSITIVITY UNCERTAINTY
Several references [2,3] describe the sensitivity
calibration of accelerometers by the fringe
counting method. The measurand, which in this
case is the charge sensitivity of the accelerometer,
can be expressed by the next relationship,

CEF
C

AFF

E
S

λπ 2

2
= (5)

The relationships shown above are applied, as an
example, for the calibration of the sensitivity
magnitude of an accelerometer. The charge
sensitivity of the accelerometer used for this
example is 0,9931 pC/(m/s2). This result is
obtained when the calibration frequency is,
FE=159,155 Hz  (1 000 rad/s) and the acceleration
level is 50 m/s2, approximately. Both the
calibration frequency and the acceleration level
are kept stable and constant during all the
measurements included in the calibration process.

Once we have already defined the measurand,
which in this case is the charge sensitivity of the
accelerometer expressed by the equation 5, then
the law of propagation of uncertianty, equation 2,
can be applied to the expression of the
measurand. This classical approach, which
considers only first order terms in the Taylor series
approximation is well known in metrology, from
this approach we can obtain an expression for the
combined standard uncertainty of the measurand,
uC(SC), as shown in the next equation,
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where the partial derivatives, (∂SC/∂xN), are called
sensitivity coefficients. These sensitivity
coefficients give the change in SC, which is due to
a unit change in each input quantity, xN. As
mentioned in section 2, by definition there are two
type of uncertainties, i.e., Type A and B; every
input quantity indicated in the expression of the
measurand, i.e., E, λ, FF, FE, and AC, may have
either the two types of uncertainty or only one
type. In the Table 1, at the end of this paper, the
uncertainty budget for the sensitivity calibration is
shown. By convolution the different types of
uncertainties can be combined.
The expressions of the sensitivity coefficients,
which are the partial derivatives of SC with respect
to each input quantity, are given below.
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The correlation coefficient, r(xi,xj), characterizes the
degree of correlation between xi and xj. Experimentally,

the correlation coefficients that were not measured at the
same time are zero, i.e., the charge amplifier sensitivity,
AC, and the laser He-Ne wavelength, λ. The input
quantities mentioned were measured before the
sensitivity calibration of the accelerometer. Therefore,
the correlation coefficients, which are different than zero,
are shown below,

r(E-FF)= + 0,26 (12)

r(E-FE)= + 0,06 (13)

r(FF-FE)= - 0,62 (14)

The classical approach, which is based on first order
Taylor series approximation, assumes that the model of
the measurand is working in its very linear range,
therefore the higher order terms can be ignored.
However, to check if the expression for the charge
sensitivity of the accelerometer is working in its linear
range, we will use up to second order terms in the Taylor
series approximation, obtaining the next relationship for
the combined standard uncertainty,
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where the partial derivatives, (∂SC/∂xN), are the
sensitivity coefficients, u(xN), are the standard
uncertainties for each input quantity and, r(xi,xj),
are the correlation coefficients between xi and xj.

Looking at equation 15 it is easy to note that it has
much more terms than equation 6. While 21 terms
are needed for the Taylor series approximation
using up to second order terms (eq. 15), only 8
terms are needed if a classic first order Taylor
series approximation is used (eq. 6). However, the
final combined standard uncertainty of the charge
sensitivity using any of the two approximations
does not have a significant difference, therefore it
can be concluded that the expression of the
charge sensitivity calibration by the fringe counting
method is working in its very linear range.

4. CONCLUSIONS
As shown in section 1, the traceability chart gives
information about the length of the traceability
chain up to the standards of basic quantities and
the accuracy of the methods used in every
calibration step.

Once we have already defined a functional
relationship of the measurand, which in this case
is the charge sensitivity of the accelerometer
expressed by the equation 5, then the law of
propagation of uncertianty, equation 2, can be
applied to the expression of the measurand. The
classical approach considers a first order Taylor

series approximation, this approach assumes that
the model of the measurand is working in its very
linear range.

To check if the expression for the charge
sensitivity of the accelerometer is working in its
linear range, up to second order terms in the
Taylor series approximation were used. This
approximation was compared with the classical

approach, the results were ( ) 82 1026,1 −×=CC Su  for

the classical approach and ( ) 82 1023,1 −×=CC Su  up

to second order terms in the Taylor series
approximation are used. The differences obtained
by the two approaches have not practical
significance, therefore the charge sensitivity model
is working in its linear range and the higher order
terms can be ignored.
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Table 1. Uncertainty budget (using a first order Taylor series approximation)

Quantity Level (xi) Type   /   std uncert   /   Distribution u2(xi)
2










∂
∂

i

C

x

S
Factor2 Contribution

Voltage, E 2 803,238 mV

(A) 0,007 mV
(B:Trac) 0,028 mV

(B:Res) 0,006 mV

0,000 9 mV2 6,28x10-8 5,44x10-11 0,4 %

Wavelength, λ 632,8 nm (B:Trac) 3,3x10-14m 1,09x10-27 m2 1,23x1012 1,34x10-15 0,0 %

Beat frequency, FF 80 498,929 Hz
(A) 10,042 Hz

(B:Res) 5,8x10-4 Hz
100,851 Hz2 7,61x1011 7,67x10-9 60,9 %

Excitation
frequency, FE

159,155 Hz
(A) 2,214x10-5 Hz

(B:Res) 5,8x10-6 Hz
5,233x10-10 Hz2 1,95x10-5 1,02x10-14 0,0 %

Charge amplifier
sensitivity, AC

99,7752 mV/pC (B:Trac) 0,01 mV/pC 0,000 1 mV2/pC2 4,95x10-5 4,95x10-9 39,3 %

Correlation 1/2
i

C

x

S

∂
∂

i

C

x

S

∂
∂

u(xi) u(xj) r(xi,xj)

E - FF 0,5 2,51x10-4 -8,72x10-6 0,029 5 mV 10,042 4 Hz 0,26 -8,40x10-11 -0,7 %

E – FE 0,5 2,51x10-4 -4,41x10-3 0,029 5 mV 0,000 02 Hz 0,06 -2,23x10-14 0,0 %

FF – FE 0,5 -8,72x10-6 -4,41x10-3 10,042 4 Hz 0,000 02 Hz -0,62 -2,74x10-12 0,0 %

Level of confidence, p = ≈≈ 95 % Combined uncertainty squared ( )Cc Su 2
1,26x10-8 [pC/(m/s2)]2

Effective degrees of freedom, νeff = 6 Combined uncertainty ( )Cc Su 0,000 11 pC/(m/s2)

Coverage factor, k = 2,65 Expanded uncertainty in pC/(m/s2) U (SC) 0,000 29 pC/(m/s2)

Expanded uncertainty in % U (SC) 0,03 %

Charge sensitivity of the accelerometer SC 0,9931 pC/(m/s2)


